tt.Rd
tt()
is a convenience shorthand for as.tidytensor()
. Given a vector, matrix, or array, returns a tidytensor.
If given a vector, converts to a 1-d array supporting dim()
, matrices are left as matrices,
and in all cases the class 'tidytensor' is added.
tt(x, ...)
input to convert to a tidytensor.
additional arguments to be passed to or from methods (ignored).
a new tidytensor.
Matrices are synonymous with 2-d arrays, so these are left as is. Vectors are converted
to 1-d arrays so that they can support dim()
.
# From an array (representing e.g. 30 26x26 images (30 sets of 26 rows of 26 pixels))
a <- array(rnorm(30 * 26 * 26), dim = c(30, 26, 26))
t <- tt(a)
ranknames(t) <- c("sample", "row", "pixel")
print(t)
#> # Rank 3 tensor, shape: (30, 26, 26), ranknames: sample, row, pixel
#> | # Rank 2 tensor, shape: (26, 26)
#> | -0.314 -0.27 -2.09 0.586 -0.674 -0.258 ...
#> | 1.09 -0.495 0.688 1.19 -0.44 -0.0599 ...
#> | -1.27 0.244 -0.141 0.585 1.06 -0.796 ...
#> | 0.285 1.46 -0.53 -0.451 0.0678 1.26 ...
#> | 0.563 0.226 0.93 -0.473 0.974 0.271 ...
#> | -0.291 0.126 1.24 -0.958 -0.119 0.301 ...
#> | ... ... ... ... ... ... ...
#> | # ...
# From a matrix (representing e.g. a 26x26 image (26 rows of 26 pixels)) using %>%
library(magrittr)
t <- matrix(rnorm(26 * 26), nrow = 26, ncol = 26) %>% tt()
ranknames(t) <- c("row", "pixel")
print(t)
#> # Rank 2 tensor, shape: (26, 26), ranknames: row, pixel
#> 0.54 0.0503 -1.32 -0.588 0.174 -0.522 ...
#> 0.163 -0.746 -0.777 1.15 -0.0735 -0.99 ...
#> 0.615 -0.356 0.0945 -1.63 -0.719 -0.434 ...
#> 1.46 -0.279 1.39 0.393 -0.888 0.81 ...
#> 1.67 -1.61 0.497 -0.249 -2.22 -1.22 ...
#> -0.022 -0.461 -0.258 -1.69 -0.853 0.442 ...
#> ... ... ... ... ... ... ...
# From a vector (representing e.g. 26 pixel values)
v <- rnorm(26)
t <- tt(rnorm(26))
ranknames(t) <- c("pixel")
print(t)
#> # Rank 1 tensor, shape: (26), ranknames: pixel
#> -1.09 0.542 -0.969 0.00849 -0.0563 -0.194 ...